

Journal of Organometallic Chemistry 660 (2002) 27-35

www.elsevier.com/locate/jorganchem

Bicyclo[2.2.2]octanes HC(SiMe₂E)₃MR (E = S, Se; M = Si, Ge, Sn; R = Me, Ph, Vi)

Uwe Herzog^{a,*}, Gerd Rheinwald^b, Horst Borrmann^c

^a Institut für Anorganische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg, Germany ^b Institut für Chemie, Lehrstuhl Anorganische Chemie, TU Chemnitz, Straße der Nationen 62, D-09111 Chemnitz, Germany ^c Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, D-01187 Dresden, Germany

Received 14 November 2001; accepted 6 June 2002

Abstract

The reactions of 1:1 mixtures of the trisilylmethane HC(SiMe₂Cl)₃ (**1b**) and organo Group 14 trichlorides (RMCl₃, R = Me, Ph, vinyl (Vi); M = Si, Ge, Sn) with Li₂E (E = S, Se) in THF yielded the new bicyclo[2.2.2]octanes HC(SiMe₂E)₃MR (**2a**-**6b**). The products were identified by GC-MS and multinuclear NMR spectroscopy. Trends of the NMR data are discussed. The molecular structures of HC(SiMe₂S)₃SiMe (**2a**), HC(SiMe₂S)₃SiPh (**3a**), HC(SiMe₂Se)₃SiVi (**4b**) and HC(SiMe₂Se)₃GeMe (**5b**) are reported. \bigcirc 2002 Published by Elsevier Science B.V.

1. Introduction

Tris(bromodimethylsilyl)methane (1a) has been shown to be a valuable starting material to build up hetero-bicyclo[2.2.2]octane systems containing a tripodal amino ligand.

Compound **1a** has been prepared in two steps from bromoform [1]:

Subsequent reaction with primary amines leads to the tripodal amines $HC[SiMe_2NHR]_3$ (R = *t*-Bu, Ph, *p*-Tol,

p-F-C₆H₄, etc.) [2–4]. After lithiation with BuLi, these amines are able to coordinate to early transition metals (Y [5], Ti [6,7], Zr [4,5,8,9], Hf [8], Nb [7]) as well as Groups 13 (Tl [10,11]), 14 (Sn, Pb [12,13]) and 15 (Sb, Bi [14]) metals, see Scheme 1.

The as formed complexes are interesting building blocks in the generation of heterobimetallics [13] or can serve as neutral molecular catalysts in olefin polymerization [9].

In a previous paper [15], we could show that related bicyclo[2.2.2]octanes containing an isotetrasilane unit and chalcogens instead of the nitrogen atoms are formed in a very smooth reaction from MeSi(SiMe₂Cl)₃, RMCl₃ (R = Me, Ph; M = Si, Ge, Sn) and a suspension of Li₂E (E = S, Se, Te) in THF:

In this paper, we report the synthesis and characterization of a series of related trisilylmethane-derived chalcogenides of Group 14 elements.

^{*} Corresponding author. Tel.: +49-3731-394343; fax: +49-3731-394058

E-mail address: uwe.herzog@chemie.tu-freiberg.de (U. Herzog).

⁰⁰²²⁻³²⁸X/02/\$ - see front matter \bigcirc 2002 Published by Elsevier Science B.V. PII: \$0022-328X(02)01666-2

2. Results and discussion

Tris(chlorodimethylsilyl)methane (**1b**) has been obtained by chlorination of $HC(SiMe_3)_3$ with acetyl chloride and aluminum chloride, a reaction which has been applied previously by our group to synthesize a variety of chlorosubstituted oligosilanes [16,17] and disilylmethanes [18]:

Reactions of 1:1 molar mixtures of **1b** and organo Group 14 trichlorides with three equivalents of freshly prepared Li_2E furnished in clean reactions the new hetero-bicyclo[2.2.2]octanes containing a trisilylmethane unit and a RME₃ cap:

The NMR data of all prepared bicyclo[2.2.2]octanes are summarized in Table 1. It is interesting to compare the ²⁹Si-NMR chemical shifts of the RM units in the bicyclo[2.2.2]octanes **2a**-**3b** with those of the related acyclic compounds RSi(EBu)₃ (E = S [19], E = Se [20]) as well as the bicyclo[2.2.2]octanes RSi(ESiMe₂)₃SiMe [15] and the adamantane-like silsesquichalcogenanes (RSi)₄E₆ [18,21].

As can be seen from Fig. 1, in all cases, the incorporation of the RSiE₃ unit into a polycyclic system of six-membered rings leads to a high field shift of the silicon NMR resonances but to a very different extend. In general, the high field shift in the bicyclo[2.2.2]octanes RSi(ESiMe₂)₃CH reaches two thirds of the effect in the related bicyclo[2.2.2]octanes RSi(ESiMe₂)₃SiMe. Similar effects can be observed by comparing the ¹¹⁹Sn-NMR chemical shifts of the tin containing bicyclo[2.2.2]octanes 6a-b with those of the acyclic compounds MeSn(SMe)₃ (+167)ppm) [22] and $MeSn(SeMe)_3$ (+15 ppm) [23] as well as the related bicyclo[2.2.2]octanes MeSn(ESiMe₂)₃SiMe (E = S: +66ppm, E = Se: -151 ppm) [15].

On the other hand, there is no high field shift due to the incorporation into a bicyclo[2.2.2]octane skeleton for the silicon atoms of the SiMe₂ units. The sulfur compounds **2a**–**6a** show a ²⁹Si-NMR signal for the SiMe₂ units of 12.7–15.1 ppm whereas, the acyclic compound HC(SiMe₂–SBu)₃ with the same first coordination sphere at silicon reveals a ²⁹Si-NMR chemical shift of 13.99 ppm.

Despite the same first coordination sphere, there are significant differences in the ⁷⁷Se-NMR chemical shifts between 2b-6b and the corresponding bicyclo[2.2.2]octanes RM(SeSiMe₂)₃SiMe [15]. In all cases, the com-⁷⁷Se-NMR pounds RM(SeSiMe₂)₃SiMe show resonances at 80-100 ppm lower field than RM(SeSi- Me_2)₃CH for the same unit RM. Furthermore, the ¹³C-NMR chemical shifts of the bridgehead CH unit should be mentioned. The observed resonances for 2a-6b are in most cases even at higher field than for the permethylated trisilylmethane (3.94 ppm) and resemble the high field ²⁹Si-NMR resonances of the bridgehead SiMe units in the corresponding bicyclo[2.2.2]octanes RM(ESi-Me₂)₃SiMe.

The molecular structures of of **2a**, **3a**, **4b** and **5b** have been determined, see Figs. 2–6. Compound **4b** crystallizes with two crystallographically independent molecules in the asymmetric unit, the trisilylmethane unit of one of them (molecule B) is disordered (see Fig. 5). Bond lengths and angles of **2a**, **3a**, **4b** and **5b** are summarized in Tables 2–5.

All bond lengths are in the expected range. The previously described tendency that Si-S bond lengths are decreasing with the number of sulfur substituents at silicon can be observed again in **2a** and **3a**. While within the SiS₃ units the Si(1)-S bonds are in average 2.13 Å, the Si-S bonds towards the trisilylmethane units (Si(2)-S(1), Si(3)-S(2), Si(4)-S(3)) are in average 2.17 Å. The same holds for the Si-Se bond lengths in **4b** (2.25-2.27 Å at Si(1), 2.30-2.32 Å at Si(2)-Si(4)). The angles at the chalcogen atoms are with 99.4-99.9 (**2a**) and 98.9-99.4 (**3a**) for E = S and 95.7-97.4 (**4b**), 96.3-96.9° (**5b**) for E = Se in all cases smaller than the tetrahedral angle. This is in agreement with molecular structures of other

Table 1 ¹H-, ¹³C-, ²⁹Si-, ¹¹⁹Sn- and ⁷⁷Se-NMR data of the bicyclo[2.2.2] octanes HC(SiMe₂E)₃MR (M = Si, Ge, Sn; R = Me, Ph, Vi; E = S, Se) (chemical shifts in ppm, coupling constants in Hz)

	М	R	Е	δ_{Se}	$\delta_{\mathbf{M}}$	$^{1}J_{\rm Mse}$	δ_{Si}	${}^{1}J_{\rm SiSe}$	$\delta_{C(\mathbf{R})}$	$\delta_{C(SiMe_2)}$	$^{1}J_{ m SiC}$	$\delta_{\rm C(CH)}$	$\delta_{\mathrm{H(R)}}$	$\delta_{\mathrm{H(SiMe}_{2})}$	$\delta_{\rm H(CH)}$
2a	Si	Me	S	_	19.37	_	12.70	_	8.71	6.93	57.0	1.32	0.91	0.56	0.06
2b	Si	Me	Se	-180	-5.72	149.5	11.76	98.7	9.93 ¹ J _{SiC} : 57.0	7.23	55.2	1.96	1.23	0.66	-0.05
3 a	Si	Ph	S	_	11.28	_	12.98	_	<i>i</i> : 135.88 <i>o</i> : 133.41 <i>m</i> : 128.00 <i>p</i> : 130.80	7.04	56.4	5.83	<i>o</i> + <i>p</i> : 7.39 <i>m</i> : 7.83	0.60	0.14
3b	Si	Ph	Se	-187	-10.80		11.91	99.1	-	7.29	53.5			0.69	
4a	Si	Vi	S	_	7.89	-	12.82	_	CH: 135.32 CH ₂ : 135.46	7.00	56.0	5.86	а	0.57	0.13
4b	Si	Vi	Se	-193	-15.25	149.7	11.79	98.8	CH: 135.23 CH ₂ : 135.29	7.27	53.8	2.52	b	0.67	0.02
5a	Ge	Me	S	_	_	_	13.89	_	11.37	7.52	55.9	1.45	1.24	0.56	0.05
5b	Ge	Me	Se	-130	_	_	12.44	103.5	12.28	7.72	53.5	2.61	1.51	0.66	-0.06
6a	Sn	Me	S	_	105	_	15.09	_	9.32	8.45	55.2	3.57	1.14	0.57	0.10
6b	Sn	Me	Se	-283	-68	1320	12.75	106.4	7.73	8.71		1.87	1.29	0.67	

^a Vinyl, CH: 6.32 (${}^{1}J_{CH}$: 145.4), CH₂: (${}^{1}J_{CH}$: 146.6) 6.10 (${}^{3}J_{HH}$: 19, ${}^{2}J_{HH}$: 2)/6.15 (${}^{3}J_{HH}$: 15). ^b Vinyl, CH: 6.44, CH₂: 6.07 (${}^{3}J_{HH}$: 19, ${}^{2}J_{HH}$: 2)/6.08 (${}^{3}J_{HH}$: 12).

Fig. 1. ²⁹Si-NMR chemical shift of RSiE₃ units in acyclic RSi(EBu)₃ [19,20], bicyclic RSi(ESiMe₂)₃CH (this work), RSi(ESiMe₂)₃SiMe [15] and tricyclic adamantane-like (RSi)₄E₆ [18,21].

cyclic and polycyclic Group 14 chalcogenanes [24–26]. In all four compounds characterized by X-ray structure analysis, the ME₃ cap is twisted by $18-19^{\circ}$ with respect to the HCSi₃ unit. This results also in the observed dihedral angles M–E–Si–C of ca. 26–29°. This twist gives raise to chirality of the molecules.

Compound **2a** crystallizes in the non-centrosymmetric space group $P2_1$ and contains only one of the two enantiomers of the bicyclo[2.2.2]octane cage. As can be seen from Fig. 7, the molecules are oriented along the crystallographic *b*-axis.

3. Experimental

3.1. NMR and GC-MS measurements

All NMR spectra were recorded on a Bruker DPX 400 in CDCl₃ solution and Me₄Si as internal standard for ¹H, ¹³C and ²⁹Si. In order to get a sufficient signal to noise ratio of ²⁹Si-NMR spectra for obtaining ¹ J_{SiC} , ¹ J_{SiSi} , ¹ J_{SiSe} or ² J_{SiSn} satellites also ²⁹Si INEPT spectra were recorded. ⁷⁷Se and ¹¹⁹Sn spectra were recorded using an IGATED pulse program.

External Me₄Sn and Ph₂Se₂ (δ_{se} : 460 ppm) in CDCl₃ were used as standards for ¹¹⁹Sn and ⁷⁷Se.

Mass spectra were measured on a Hewlett-Packard 5971 (ionization energy: 70 eV, column: 30 m \times 0.25 mm \times 0.25 µm, phenylmethylpolysiloxane, column temperature: 80 °C (3 min)/20 K/min/200 °C, flow: He 0.5 ml min⁻¹).

3.2. Crystal structure analysis

X-ray structure analysis measurements of 2a, 3a and 4b were performed on a BRUKER SMART CCD, while a RIGAKU AFC7 with Mercury CCD was used for 5b. Crystal data of 2a, 3a, 4b and 5b as well as data collection and refinement details are given in Table 6.

The unit cells of **2a**, **3a** and **4b** were determined with the program SMART [27]. For data integration and refinement of the unit cells, the program SAINT [27] was used. The space groups were determined using the programs XPREP [27]. All data were corrected for absorption using SADABS [28]. For the data collection, unit cell refinement and data reduction of **5b** the program package Crystal Clear (Rigaku Corp. (2000)) was used. The structures were solved using direct methods (SIR-97 [29]), refined using least-squares meth-

Fig. 2. ORTEP plot of the molecular structure of 2a.

Fig. 5. ORTEP plot of the molecular structure of molecule B of 4b. Thermal ellipsoids are shown at the 30% probability level, hydrogen atoms are omitted for clarity.

dried over KOH or Na wire. All reactions were carried out under Ar applying standard Schlenk techniques.

3.4. Preparation of tris(chlorodimethylsilylmethane), $HC(SiMe_2Cl)_3$ (1b)

HC(SiMe₃)₃ (7.7 g, 33 mmol) was dissolved in 10 ml hexane and AlCl₃ (14.0 g, 105 mmol) was added. Acetyl chloride (8.25 g, 105 mmol) was slowly added to the stirred mixture at 0 °C. After stirring over night at room temperature (r.t.), the upper layer of hexane and 1b was separated and the solvent removed in vacuo to yield 7.9 g (82%) pure **1b** as oily residue.

Fig. 4. ORTEP plot of the molecular structure of molecule A of 4b. Thermal ellipsoids are shown at the 30% probability level.

Fig. 6. ORTEP plot of the molecular structure of 5b. Thermal ellipsoids are shown at the 30% probability level.

Fig. 3. ORTEP plot of the molecular structure of 3a.

ods (SHELXL-97 [30]) and drawn using DIAMOND [31]. The ellipsoides at the non-hydrogen atoms are shown at the 50% probability level for 2a and 3a and 30% for 4b and 5b.

3.3. Starting materials

S, Se, 1 M Li[BEt₃H] in THF (Super Hydride), MeSiCl₃, PhSiCl₃, ViSiCl₃, MeGeCl₃ and MeSnCl₃, were commercially available. HC(SiMe₃)₃ was prepared as described in Ref. [32]. THF was distilled from sodium potassium alloy prior to use. The other solvents were

Table 2 Selected bond distances (Å) and angles (°) of ${\bf 2a}$

Atoms	Distances	Atoms	Angles
Si(1)-S(1)	2.133(2)	S(1)-Si(1)-S(2)	110.41(8)
Si(1) - S(2)	2.129(2)	S(1)-Si(1)-S(3)	110.57(8)
Si(1) - S(3)	2.138(2)	S(2)-Si(1)-S(3)	111.14(7)
Si(2) - S(1)	2.172(2)	Si(1) - S(1) - Si(2)	99.41(6)
Si(3) - S(2)	2.165(2)	Si(1) - S(2) - Si(3)	99.90(7)
Si(4) - S(3)	2.168(2)	Si(1) - S(3) - Si(4)	99.68(8)
Si(2) - C(1)	1.898(4)	S(1)-Si(2)-C(1)	107.8(2)
Si(3) - C(1)	1.891(5)	S(2)-Si(3)-C(1)	107.6(2)
Si(4) - C(1)	1.885(5)	S(3)-Si(4)-C(1)	107.9(2)
Si(1) - C(2)	1.860(6)	Si(2) - C(1) - Si(3)	112.5(2)
Si(2) - C(3)	1.861(6)	Si(2) - C(1) - Si(4)	113.3(2)
Si(2) - C(4)	1.855(5)	Si(3) - C(1) - Si(4)	113.1(3)
Si(3) - C(5)	1.852(6)		
Si(3)-C(6)	1.868(5)	Si(1)-S(1)-Si(2)-C(1)	27.6(2)
Si(4) - C(7)	1.862(5)	Si(1)-S(2)-Si(3)-C(1)	27.5(2)
Si(4)-C(8)	1.864(5)	Si(1)-S(3)-Si(4)-C(1)	26.7(2)

HC(SiMe₃)₃, NMR (ppm, Hz): ¹H: 0.105 (SiMe₃), -0.782 (HC); ¹³C: 3.27 (SiMe₃) ¹ J_{SiC} : 51.0, 3.94 (HC) ¹ J_{SiC} : 37.6; ²⁹Si: -0.42.

Compound **1b**, NMR (ppm, Hz): ¹H: 0.664 (SiMe₂), 0.713 (HC); ¹³C: 6.14 (SiMe₂) ${}^{1}J_{SiC}$: 60.2, 15.69 (HC) ${}^{1}J_{SiC}$: 39.5; ²⁹Si: 26.38.

HC(SiMe₃)₃, GC-MS (*m*/*e*, relative intensity): 217 (M-Me, 100), 129 (HCSi₂Me₄, 22), 73 (SiMe₃, 28).

Compound **1b**, GC–MS: 279 (M–Me, 100), 257 (M– Cl, 8), 169 (HCSi₂Me₂Cl₂, 26), 149 (HCSi₂Me₃Cl, 34), 93 (SiMe₂Cl, 21).

If the chlorination reaction is incomplete, besides **1b** also the doubly chlorinated trisilylmethane Me₃-SiCH(SiMe₂Cl)₂ can be detected as by-product.

Table 3 Selected bond distances (Å) and angles (°) of 3a

Atoms	Distances	Atoms	Angles
Si(1)-S(1)	2.1358(8)	S(1)-Si(1)-S(2)	111.44(3)
Si(1) - S(2)	2.1263(8)	S(1)-Si(1)-S(3)	109.49(3)
Si(1) - S(3)	2.1372(8)	S(2)-Si(1)-S(3)	111.57(3)
Si(2) - S(1)	2.1765(8)	Si(1) - S(1) - Si(2)	98.93(3)
Si(3) - S(2)	2.1737(8)	Si(1) - S(2) - Si(3)	99.20(3)
Si(4) - S(3)	2.1717(8)	Si(1) - S(3) - Si(4)	99.36(3)
Si(2) - C(1)	1.886(2)	S(1)-Si(2)-C(1)	107.10(7)
Si(3)-C(1)	1.882(2)	S(2)-Si(3)-C(1)	107.41(7)
Si(4) - C(1)	1.884(2)	S(3)-Si(4)-C(1)	107.35(7)
Si(1) - C(2)	1.867(2)	Si(2) - C(1) - Si(3)	113.02(10)
Si(2)-C(8)	1.864(2)	Si(2) - C(1) - Si(4)	113.01(10)
Si(2)-C(9)	1.856(2)	Si(3) - C(1) - Si(4)	113.64(11)
Si(3)-C(10)	1.859(2)		
Si(3)-C(11)	1.867(3)	Si(1)-S(1)-Si(2)-C(1)	29.07(7)
Si(4)-C(12)	1.862(2)	Si(1)-S(2)-Si(3)-C(1)	27.91(8)
Si(4) - C(13)	1.863(3)	Si(1)-S(3)-Si(4)-C(1)	27.30(7)

Table 4 Selected bond distances (Å) and angles (°) of molecule A of 4b

Atoms	Distances	Atoms	Angles
Si(1)-Se(1)	2.274(5)	Se(1) - Si(1) - Se(2)	111.9(2)
Si(1)-Se(2)	2.253(5)	Se(1) - Si(1) - Se(3)	110.4(2)
Si(1)-Se(3)	2.265(5)	Se(2) - Si(1) - Se(3)	111.4(2)
Si(2)-Se(1)	2.298(5)	Si(1) - Se(1) - Si(2)	97.4(2)
Si(3)-Se(2)	2.316(7)	Si(1) - Se(2) - Si(3)	95.7(2)
Si(4) - Se(3)	2.303(6)	Si(1) - Se(3) - Si(4)	96.9(2)
Si(2) - C(1)	1.880(19)	Se(1) - Si(2) - C(1)	108.3(5)
Si(3) - C(1)	1.890(17)	Se(2)-Si(3)-C(1)	109.9(6)
Si(4) - C(1)	1.905(18)	Se(3) - Si(4) - C(1)	108.7(6)
Si(1) - C(2)	1.868(17)	Si(2)-C(1)-Si(3)	115.0(9)
Si(2) - C(4)	1.89(2)	Si(2)-C(1)-Si(4)	113.6(9)
Si(2) - C(5)	1.91(3)	Si(3) - C(1) - Si(4)	113.8(10)
Si(3) - C(6)	1.86(3)	Si(1)-C(2)-C(3)	126.0(16)
Si(3) - C(7)	1.85(3)		
Si(4) - C(8)	1.862(17)	Si(1)-Se(1)-Si(2)-C(1)	26.8(6)
Si(4) - C(9)	1.88(2)	Si(1)-Se(2)-Si(3)-C(1)	26.6(7)
C(2) - C(3)	1.29(3)	Si(1)-S(3)-Si(4)-C(1)	26.3(6)

 $(Si^{A}Me_{3})$ ¹ J_{SiC} : 52.5, 11.98 (HC), 6.35/6.41 ($Si^{B}Me_{2}$, diastereotopic Me-groups) ¹ J_{SiC} : 58.8; ²⁹Si: A: -0.45, B: 27.49.

3.5. Preparation of the bicyclo[2.2.2]octanes $HC(SiMe_2S)_3MR$ (MR = SiMe, SiPh, SiVi, GeMe, SnMe, 2a-6a)

Compound **1b** (0.29 g, 1.0 mmol) and organotrichloride RMCl₃ (1.0 mmol) (MR = SiMe, SiPh, SiVi, GeMe, SnMe) were mixed in 1 ml hexane. This mixture was quickly added to a stirred solution of 3.0 mmol Li₂S in THF, prepared from 0.096 g (3.0 mmol) sulfur and 6.0 ml of a 1 M solution of LiBEt₃H in THF as described previously [15]. After stirring for 20 min, the solvent was replaced by 10 ml hexane and filtered. Removal of the

Table 5 Selected bond distances (Å) and angles (°) of $\mathbf{5b}$

Atoms	Distances	Atoms	Angles
Ge(1)-Se(1)	2.3426(6)	Se(1)-Ge(1)-Se(2)	110.88(3)
Ge(1)-Se(2)	2.3490(6)	Se(1)-Ge(1)-Se(3)	110.49(2)
Ge(1)-Se(3)	2.3450(7)	Se(2)-Ge(1)-Se(3)	108.18(2)
Si(1)-Se(1)	2.3030(11)	Ge(1)-Se(1)-Si(1)	96.29(3)
Si(2)-Se(2)	2.2970(11)	Ge(1)-Se(2)-Si(2)	96.87(3)
Si(3)-Se(3)	2.3047(13)	Ge(1)-Se(3)-Si(3)	95.71(4)
Si(1) - C(1)	1.892(4)	Se(1) - Si(1) - C(1)	108.85(14)
Si(2) - C(1)	1.887(4)	Se(2) - Si(2) - C(1)	109.08(13)
Si(3) - C(1)	1.882(4)	Se(3) - Si(3) - C(1)	109.41(13)
Ge(1) - C(2)	1.935(4)	Si(1)-C(1)-Si(2)	114.6(2)
Si(1) - C(3)	1.864(4)	Si(1) - C(1) - Si(3)	115.0(2)
Si(1) - C(4)	1.857(5)	Si(2)-C(1)-Si(3)	114.8(2)
Si(2) - C(5)	1.859(5)		
Si(2) - C(6)	1.858(5)	Ge(1)-Se(1)-Si(1)-C(1)	28.8(2)
Si(3) - C(7)	1.872(5)	Ge(1)-Se(2)-Si(2)-C(1)	26.3(2)
Si(3) - C(8)	1.860(4)	Ge(1)-Se(3)-Si(3)-C(1)	29.2(2)

Table 6 Crystal data of **2a**, **3a**, **4b**, and **5b** as well as data collection and refinement details

	2a	3a	4b	5b
Empirical formula	C ₈ H ₂₂ S ₃ Si ₄	C13H24S3Si4	$C_9H_{22}Se_3Si_4$	C ₈ H ₂₂ GeSe ₃ Si ₃
Formula weight	326.80	388.86	479.51	512.01
Temperature (K)	173(2)	173(2)	173(2)	295(2)
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Crystal shape	Block	Broken triangular plate	Rod	Block
Crystal color	Colorless	Colorless	Colorless	Colorless
Space group	P21	$P2_1/n$	PĪ	$P2_1/c$
Unit cell dimensions				
a (Å)	8.843(1)	8.719(1)	9.631(10)	9.7295(8)
b (Å)	10.274(1)	22.136(3)	13.908(12)	10.3208(5)
c (Å)	9.389(1)	11.034(1)	14.986(10)	18.3213(16)
α (°)			105.81(2)	
β (°)	97.792(3)	107.124(3)	91.40(1)	98.897(4)
γ (°)			105.20(2)	
V (Å ³)	845.14(15)	2035.0(5)	1854(3)	1817.6(2)
Ζ	2	4	4	4
$D_{\rm calc} ({\rm g}{\rm cm}^{-3})$	1.284	1.269	1.718	1.871
Linear absorption coef-	0.696	0.590	6.190	7.866
ficient (mm ⁻¹)				
Crystal size (mm)	0.30 imes 0.10 imes 0.06	$0.48 \times 0.25 \times 0.10$	$0.40 \times 0.20 \times 0.20$	$0.30 \times 0.25 \times 0.10$
Scan method	ω scans	ω scans	ω scans	ϕ scans
Absorption correction	Empirical	Empirical	Empirical	Numerical
Theta range for collection (°)	2.19-30.85	1.84-30.91	1.42-30.60	2.25-28.0
Index ranges	$-10 \le h \le 12$,	$-12 \le h \le 12,$	$-13 \le h \le 13$,	$-12 \le h \le 10,$
C	$-9 \le k \le 14, -7 \le l \le 13$	$-30 \le k \le 31, -15 \le l \le 13$	$-19 \le k \le 14, -21 \le l \le 21$	$-13 \le k \le 13, -24 \le l \le 19$
Measured reflections	4230	16856	15 074	20 268
Observed reflections	2541	3815	4671	3062
Independent reflections	3367 $[R_{int} = 0.0312]$	5886 $[R_{int} = 0.0437]$	$10121 \ [R_{\rm int} = 0.0620]$	4237 $[R_{int} = 0.0387]$
Max/min transmission	0.9594/0.8183	0.9434/0.7650	0.3707/0.1909	0.6933/0.3106
Completeness to θ_{max} (%)	80.5	91.4	88.7	96.6
Number of parameters	143	277	379	147
Final <i>R</i> indices	$R_1 = 0.0470, wR^2 = 0.1031^{\text{a}}$	$R_1 = 0.0380, wR^2 = 0.0789^{\text{a}}$	$R_1 = 0.1092, wR^2 = 0.3397^{\text{a}}$	$R_1 = 0.0392, wR^2 = 0.0905^{\text{a}}$
$[I > 2\sigma(I)]$	1	1	1,	1
<i>R</i> indices (all data)	$R_1 = 0.0728, wR^2 = 0.1139^{\text{a}}$	$R_1 = 0.0804, wR^2 = 0.0917^{\text{a}}$	$R_1 = 0.1970, wR^2 = 0.3722^{\text{a}}$	$R_1 = 0.0637, wR^2 = 0.0972^{\text{a}}$
Goodness-of-fit (S) ^b on F^2	0.986	0.993	1.063	0.984
w-parameters (a/b)	0.0607/0	0.042/0	0.163/32.633	0.0586/0
H-locating and refining	Geom./constr.	Difmap/refall	Geom./constr.	Difmap/refall
Max/min e-density (e $Å^{-3}$)	0.499/-0.475	0.383/-0.324	2.255/-1.173	0.857/-0.554

 ${}^{a}_{b}_{c} R_{1} = \sum (||F_{o}| - |F_{c}||) / \sum |F_{o}|, wR^{2} = [\sum (w(F_{o}^{2} - F_{c}^{2})^{2}) / \sum (wF_{o}^{2})]^{1/2}, w = 1 / [\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP] \text{ where } P = (F_{o}^{2} + 2F_{c}^{2}) / 3.$

^b $S = [\Sigma w (F_o^2 - F_c^2)^2] / (n-p)^{1/2}; n$, used reflections, p, used parameters.

solvent from the filtrate yielded 2a-6a as colorless crystals in 50-70% yield.

Compound **2a**: m.p. 163 °C, **3a**: m.p. 149 °C, **4a**: m.p. 116 °C.

Compound **2a**, GC–MS: 326 ([M]⁺, 26), 311 (M– Me, 100), 221 (HCSi₃Me₄S₂, 22), 131 (Si₂Me₅, 20), 73 (SiMe₃, 82), elemental analysis: $C_8H_{22}S_3Si_4$ (M = 326.80g mol⁻¹, calc./exp.): C, 29.40/28.95; H, 6.79/6.53%.

Compound **3a**, GC–MS: 388 ($[M]^+$, 32), 373 (M– Me, 100), 283 (HCSi₃Me₃S₂Ph, 18), 221 (HCSi₃Me₄S₂, 7), 135 (SiMe₂Ph, 56), 73 (SiMe₃, 22), elemental analysis: $C_{13}H_{24}S_3Si_4$ (M = 388.87 g mol⁻¹, calc./exp.): C, 40.15/39.51; H, 6.22/6.33%.

Compound **4a**, GC–MS: 338 ($[M]^+$, 24), 323 (M– Me, 100), 233 (HCSi₃Me₃S₂Vi, 19), 221 (HCSi₃Me₄S₂, 10), 131 (Si₂Me₅, 15), 85 (SiMe₂Vi, 35), 73 (SiMe₃, 33), elemental analysis: C₉H₂₂S₃Si₄ (M = 338.81 g mol⁻¹, calc./exp.): C, 31.91/32.14; H, 6.55/6.91%.

Compound **5a**, GC–MS: 372 ($[M]^+$, 22), 357 (M– Me, 100), 267 (HCSi₂Me₄S₂Ge, 8), 221 (HCSi₃Me₄S₂, 15), 129 (HCSi₂Me₄, 23), 119 (GeMe₃, 42), 73 (SiMe₃, 56), elemental analysis: C₈H₂₂GeS₃Si₃ (M = 371.30 g mol⁻¹, calc./exp.): C, 25.88/25.92; H, 5.97/6.44%.

Fig. 7. The crystal structre of 2a, view down the crystallographic *a*-axis. The molecules are oriented in a way that the S₃SiMe units point in the direction of the *b*-axis. In accordance with the non-centrosymmetric space groups all molecules show the same chirality.

Compound **6a**, GC–MS: 418 ([M]⁺, 16), 403 (M– Me, 100), 375 (HCSi₂Me₆S₃Sn, 2), 313 (HCSi₂Me₄S₂Sn, 3), 283 (HCSi₂Me₂S₂Sn, 2), 251 (HCSi₃Me₆S₂, 6), 221 (HCSi₃Me₄S₂, 20), 161 (HCSi₂Me₄S, 62), 131 (Si₂Me₅, 21), 73 (SiMe₃, 38), elemental analysis: C₈H₂₂S₃Si₃Sn (M = 417.40 g mol⁻¹, calc./exp.): C, 23.02/22.41; H, 5.31/5.87%.

3.6. Preparation of the bicyclo[2.2.2]octanes $HC(SiMe_2Se)_3MR$ (MR = SiMe, SiPh, SiVi, GeMe, SnMe, **2b**-**6b**)

Applying essentially the same procedure as described above, a mixture of 0.29 g (1.0 mmol) **1b** and 1.0 mmol of an organotrichloride RMCl₃ (MR = SiMe, SiPh, SiVi, GeMe, SnMe) in 1 ml hexane was added to a stirred suspension of 3.0 mmol Li₂Se in THF, freshly prepared from 0.24 g (3.0 mmol) Se powder and 6.0 ml of a 1 M solution of LiBEt₃H in THF. **2b–6b** were obtained as colorless crystalline solids from hexane solutions in 45–65% yield.

Compound **2b**, GC–MS: 468 ($[M]^+$, 49), 453 (M– Me, 52), 317 (HCSi₃Me₄Se₂, 25), 207 (5), 193 (8), 129 (HCSi₂Me₄, 27), 73 (SiMe₃, 100), elemental analysis: C₈H₂₂Se₃Si₄ (M = 467.50 g mol⁻¹, calc./exp.): C, 20.55/ 21.12; H, 5.31/5.29%.

Compound **3b**, GC–MS: 530 ([M]⁺, 49), 515 (M– Me, 36), 379 (HCSi₃Me₃Se₂Ph, 17), 317 (HCSi₃Me₄Se₂, 10), 207 (24), 135 (SiMe₂Ph, 100), 129 (HCSi₂Me₄, 37), 73 (SiMe₃, 66), elemental analysis: $C_{13}H_{24}Se_3Si_4$ (M = 529.57 g mol⁻¹, calc./exp.): C: 29.48/28.97; H, 4.57/ 5.04%.

Compound **4b**, GC–MS: 480 ($[M]^+$, 79), 465 (M– Me, 65), 329 (HCSi₃Me₃Se₂Vi,16), 317 (HCSi₃Me₄Se₂, 15), 267 (HCSi₃Me₆Se, 9), 179 (HCSi₂Me₂Se, 27), 129 (HCSi₂Me₄, 47), 85 (SiMe₂Vi, 100), 73 (SiMe₃, 97), elemental analysis: C₉H₂₂Se₃Si₄ (M = 479.51 g mol⁻¹, calc./exp.): C: 22.54/22.44; H, 4.62/4.28%.

Compound **5b**, GC–MS: 512 ($[M]^+$, 46), 497 (M– Me, 50), 361 (HCSi₂Me₄Se₂Ge, 7), 347 (HCSi₃Me₆Se₂, 26), 317 (HCSi₃Me₄Se₂, 12), 267 (HCSi₃Me₆Se, 15), 209 (HCSi₂Me₄Se, 33), 179 (HCSi₂Me₂Se, 19), 129 (HCSi₂Me₄, 60), 73 (Me₃Si, 100), elemental analysis: C₈H₂₂GeSe₃Si₃ (M = 512.00 g mol⁻¹, calc./exp.): C, 18.76/19.53; H: 4.33/5.06%.

Compound **5b**, elemental analysis: $C_8H_{22}Se_3Si_3Sn$ (M = 558.10 g mol⁻¹, calc./exp.): C, 17.22/17.99; H, 3.97/4.43%.

3.7. Preparation of tris(thiobutyldimethylsilyl)methane, $HC(SiMe_2-SBu)_3$

In analogy to the preparation of other thiobutyl substituted silanes published in Ref. [19], 0.29 g (1.0 mmol) **1b** and 0.27 g (3.0 mmol) 1-butanethiol were dissolved in 15 ml hexane and 0.42 ml (3.0 mmol) NEt₃ were slowly added by a syringe. After stirring for 1 week at r.t., the mixture was filtered and the solvent removed in vacuo yielding HC(SiMe₂–SBu)₃ as a colorless oily residue in almost quantitative yield. The product was characterized by ¹H-, ¹³C- and ²⁹Si-NMR:

¹H-NMR (ppm): 0.52 (SiMe₂), 2.50 (S–CH₂), 1.58 (S–CH₂–CH₂), 1.41 (S–CH₂–CH₂–CH₂), 0.91 (S–CH₃); ¹³C: 4.24 (SiMe₂), 27.05 (S–CH₂), 34.93 (S–CH₂–CH₂), 21.94 (S–CH₂–CH₂–CH₂), 13.63 (S–CH₃); ²⁹Si: 13.99 (¹ J_{SiC} : 55.2 Hz).

If the reaction is stopped after 2 days, the product is essentially a mixture of the partially substituted products HC(SiMe₂Cl)₂(SiMe₂SBu) and HC(SiMe₂Cl)(Si-Me₂SBu)₂.

HC(SiMe₂Cl)₂(SiMe₂SBu): ¹H-NMR (ppm): 0.652 (SiMe₂Cl), 0.542 (Si Me_2 SBu); ¹³C: 6.62/6.54 (SiMe₂Cl, diastereotopic Me-groups), 3.48 (Si Me_2 SBu); ²⁹Si: 26.95 (SiMe₂Cl), 12.70 (SiMe₂SBu).

HC(SiMe₂Cl)(SiMe₂SBu)₂: ¹H-NMR (ppm): 0.642 (SiMe₂Cl), 0.531 (SiMe₂SBu); ¹³C: 6.95 (SiMe₂Cl), 3.90/3.88 (SiMe₂SBu); ²⁹Si: 27.66 (SiMe₂Cl), 13.34 (SiMe₂SBu).

The ¹H- and ¹³C-NMR chemical shifts of the thiobutyl units are identical with those of $HC(SiMe_2 - SBu)_3$.

4. Supplementary material

Crystallographic data (excluding structure factors) for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC nos. 179838–179840, 186693 for compounds **2a**, **3a**, **4b** and **5b**. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; email: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

Acknowledgements

The authors wish to thank the 'Deutsche Forschungsgemeinschaft' for financial support. Special thanks are given to Professor H. L., Chair of Inorganic Chemistry, TU Chemnitz for the access to the X-ray facility used to determine the single crystal structures of **2a**, **3a** and **4b**.

References

- [1] L.H. Gade, C. Becker, J.W. Lauher, Inorg. Chem. 32 (1993) 2308.
- [2] H. Memmler, L.H. Gade, J.W. Lauher, Inorg. Chem. 33 (1994) 3064.
- [3] P. Renner, C.H. Galka, L.H. Gade, M. McPartlin, Inorg. Chem. Commun. 4 (2001) 191.
- [4] P. Renner, C.H. Galka, L.H. Gade, S. Radojevic, M. McPartlin, Eur. J. Inorg. Chem. (2001) 1425.
- [5] H. Memmler, K. Walsh, L.H. Gade, Inorg. Chem. 34 (1995) 4062.
- [6] S. Friedrich, H. Memmler, L.H. Gade, W.-S. Li, M. McPartlin, Angew. Chem. 106 (1994) 705.
- [7] G. Hildebrand, A. Spannenberg, P. Arndt, R. Kempe, Organometallics 16 (1997) 5585.
- [8] P. Renner, C. Galka, H. Memmler, U. Kauper, L.H. Gade, J. Organomet. Chem. 591 (1999) 71.

- [9] L. Jia, E. Ding, A.L. Rheingold, B. Rhatigan, Organometallics 19 (2000) 963.
- [10] K.W. Hellmann, L.H. Gade, A. Steiner, D. Stalke, F. Möller, Angew. Chem. 109 (1997) 99.
- [11] C.H. Galka, L.H. Gade, Chem. Commun. (2001) 899.
- [12] K.W. Hellmann, L.H. Gade, O. Gevert, P. Steinert, Inorg. Chem. 34 (1995) 4069.
- [13] K.W. Hellmann, S. Friedrich, L.H. Gade, W.-S. Li, M. McPartlin, Chem. Ber. 128 (1995) 29.
- [14] M.R. Mason, S.S. Phulpagar, M.S. Mashuta, J.F. Richardson, Inorg. Chem. 39 (2000) 3931.
- [15] U. Herzog, G. Rheinwald, Organometallics 20 (2001) 5369.
- [16] U. Herzog, G. Roewer, J. Organomet. Chem. 544 (1997) 217.
- [17] U. Herzog, N. Schulze, K. Trommer, G. Roewer, J. Organomet. Chem. 547 (1997) 133.
- [18] U. Herzog, G. Rheinwald, J. Organomet. Chem. 628 (2001) 133.
- [19] U. Herzog, G. Roewer, Main Group Metal Chem. 22 (1999) 579.
- [20] U. Herzog, J. Prakt. Chem. 342 (2000) 379.
- [21] H.-G. Horn, J. Prakt. Chem. 334 (1992) 201.
- [22] J.D. Kenndey, W. McFarlane, J. Chem. Soc. Perkin Trans. II (1974) 146.
- [23] J.D. Kennedy, W. McFarlane, J. Chem. Soc. Dalton Trans. (1973) 2134.
- [24] U. Herzog, U. Böhme, G. Roewer, G. Rheinwald, H. Lang, J. Organomet. Chem. 602 (2000) 193.
- [25] U. Herzog, G. Rheinwald, J. Organomet. Chem. 627 (2001) 23.
- [26] U. Herzog, U. Böhme, G. Rheinwald, J. Organomet. Chem. 627 (2001) 144.
- [27] Bruker AXS Inc., Madison, WI, USA, 1998.
- [28] Area-Detector Absorption Correction, Siemens Industrial Automation Inc., Madison, WI, USA, 1996.
- [29] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 32 (1999) 115.
- [30] G.M. Sheldrick, SHELX-97 (includes SHELXS-97, SHELXL-97, CIF-TAB), Programs for Crystal Structure Analysis (Release 97-2), University of Göttingen, Germany, 1997.
- [31] M. Berndt, K. Brandenburg, H. Putz, DIAMOND 2.1, Crystal Impact GbR, www.crystalimpact.de, Bonn, Germany, 1999.
- [32] R.L. Merker, M.J. Scott, J. Organomet. Chem. 4 (1965) 98.